Grassland species effects on soil CO2 flux track the effects of elevated CO2 and nitrogen

نویسندگان

  • Joseph M. Craine
  • David A. Wedin
  • Peter B. Reich
چکیده

• Understanding and predicting the impacts of elevated atmospheric CO2, elevated nitrogen deposition, and decreases in plant diversity require better understanding of the way in which plant species influence soil CO2 flux. • In experimental grassland plots where atmospheric CO2, nitrogen supply, and species composition and diversity were manipulated, species effects on soil CO2 flux during 19 sampling periods over 2 yr were determined for 16 grassland species. • The average effect of a species on soil CO2 flux was correlated with biomass of the species grown in monoculture, suggesting that effects of species on soil CO2 flux are related to the potential productivity of a species and total belowground C allocation. During dry, warm conditions there is a greater effect of elevated atmospheric CO2 on soil CO2 flux and during these times deeper-rooted species contribute to soil CO2 flux more than average. • Although differences in responses to elevated CO2 and nitrogen among species were not great, decreases in diversity can affect belowground carbon allocation depending on the plant traits of the species that are lost from ecosystems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elevated CO2 reduces losses of plant diversity caused by nitrogen deposition.

The interactive effects of rising atmospheric carbon dioxide (CO2) concentrations and elevated nitrogen (N) deposition on plant diversity are not well understood. This is of concern because both factors are important components of global environmental change and because each might suppress diversity, with their combined effects possibly additive or synergistic. In a long-term open-air experimen...

متن کامل

Interactive effects of plant species diversity and elevated CO2 on soil biota and nutrient cycling.

Terrestrial ecosystems consist of mutually dependent producer and decomposer subsystems, but not much is known on how their interactions are modified by plant diversity and elevated atmospheric CO2 concentrations. Factorially manipulating grassland plant species diversity and atmospheric CO2 concentrations for five years, we tested whether high diversity or elevated CO2 sustain larger or more a...

متن کامل

Nitrogen deposition and plant species interact to influence soil carbon stabilization

Feike A. Dijkstra* Sarah E. Hobbie Johannes M. H. Knops and Peter B. Reich Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, MN 55108, USA School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA Department of Forest Resources, University of Minnesota, St Paul, MN 55108, USA *Correspondence: E-mail: [email protected] Abstract Anthropogenic ni...

متن کامل

Warming Reduces Carbon Losses from Grassland Exposed to Elevated Atmospheric Carbon Dioxide

The flux of carbon dioxide (CO2) between terrestrial ecosystems and the atmosphere may ameliorate or exacerbate climate change, depending on the relative responses of ecosystem photosynthesis and respiration to warming temperatures, rising atmospheric CO2, and altered precipitation. The combined effect of these global change factors is especially uncertain because of their potential for interac...

متن کامل

Interactive effects of elevated CO2 and precipitation change on leaf nitrogen of dominant Stipa L. species

Nitrogen (N) serves as an important mineral element affecting plant productivity and nutritional quality. However, few studies have addressed the interactive effects of elevated CO2 and precipitation change on leaf N of dominant grassland genera such as Stipa L. This has restricted our understanding of the responses of grassland to climate change. We simulated the interactive effects of elevate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001